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Problem & contributions

f? = min
x

f (x)

s.t. gi(x) ≥ 0, i ∈ I
gj(x) = 0, j ∈ E

(POP )

where f, gi, gj : Rn→ R are polynomials.

. Problem

Find a global minimizer x? of large-scale (POP )
. Contribution
bring together tools from different math disciplines
a hybrid algorithm
1. a 1st order method on a convex relaxation (Pr)
2. a theoretically grounded switch to Newton’s method on
(POP )

Difficulties & approach

The global minimizer of large (POP ) is provided by very
large SDP relaxations (Pr).

. Interior Point Methods: go-to method for solving (Pr)

! fast convergence

% not applicable (too high memory cost)

. First-order methods on (Pr) — fig. 2

! low per-iteration cost

≈ slow convergence: provide rough solutions of (Pr)

. Newton on smooth polynomial equations — fig. 1

≈ poor convergence away from solution

! superfast local convergence near solutions

. Active constraint identification — fig. 3

! turns (POP ) into smooth poly. eq. near x?

Illustrative problem

min
x∈R2

f (x) = −2.5x2
1 + 3x1x2 − 2.5x2

2 − 3x1 + 5x2 − 2.5

s.t. g1(x) = −0.5x3
1 + x2 ≥ 0

g2(x) = −0.05x2
1 − x2 + 1.8 ≥ 0

g3(x) = −0.05x2
2 + x1 + 0.1x2 + 0.35 ≥ 0

(1)
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Figure 1. Left pane: problem (1). Right pane: Newton’s method:
slow away from (x?, λ?), fast near (x?, λ?).

1. Convex relaxations

TLDR: (Pr) is a sequence of increasingly large SDP prob-

lems, whose optimal value converge to f? from below.

. Moment relaxation, order r

ρr = inf
y∈RNn

2r

Ly(f )

s.t. Mr(y) � 0
Mr−rj(gjy) = 0, j ∈ E
Mr−rj(gjy) � 0, j ∈ I
y0 = 1

(Pr)

where rj = d(deg gj)/2e, y is a sequence indexed by ex-
ponents α ∈ Nn

2r = {α ∈ Nn :
∑

αi ≤ 2r}, Ly : f =∑
α fαXα 7→

∑
α fαyα is the Riesz functional, and Md(y)

and Md(gjy) are the moment and localizing matrices:

Md(y)[α, β] = Ly(XαXβ) = yα+β

Md(gjy)[α, β] = Ly(gjX
αXβ) =

∑
δ

gj,δyα+β+δ,

for all α, β ∈ Nn
d .

. Property [3]: ρr converges to f? from below.

If (Pr) has a unique global minimizer x?, and yr is a nearly

optimal solution of (Pr), then

lim
r→∞

Lyr(Xj) = x?
j
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Figure 2. First-order method on the third relaxation (P3) of (1).
Left pane: points xk = (Lyk(X1), Lyk(X2))k ∈ R2, where yk ∈ RN2

6 is

the k-th iterate of the 1st order method on (P3). Right pane:
distance between xk and the global minimizer x?. The dashed red line

indicates the first time the correct active set is detected.

2. Identifying active constraints

TLDR: at x?, some constraints are null and others positive.

A? = {i ∈ I : gi(x?) = 0}
can be detected from any point x near x?.

. The Lagrangian for (POP ) is
L(x, λ) = f (x)− λ>g(x),

where λ ∈ RmE × RmI
+ is the Lagrange multiplier vector.

. The first-order “KKT” necessary optimality conditions:
there exist λ? such that

∇xL(x?, λ?) = 0
gE(x?) = 0

0 ≤ gI(x?) ⊥ λ?
I ≥ 0

(2)

where a ⊥ b means a>b = 0.
. Measure of the KKT residual at point (x, λ):

r(x, λ) = ‖∇xL(x, λ)‖ + ‖gE(x)‖
+ ‖ [−gI(x)]+ ‖ + |λT

I gI(x)| + ‖[−λI ]+‖

. From point x, the active set is chosen as

ω(x) = min
λ∈RmE×RmI

+

r(x, λ)

A(x) = {i : gi(x) ≤ −1/ log(ω(x))}

Theorem [1, Th. 3.2]: Consider x? that satisfies KKT (2), a

qualification condition MFCQ, and is an isolated critical point.

Then, there exists ε > 0 such that
A(x) = A? for all x : ‖x− x?‖ < ε.
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Figure 3. A(x) = A? = {1} for x near x?, for problem (1).

3. Newton’s method, α-β

TLDR: For a polynomial system F : Rp→ Rp and z0 ∈ Rp,

if α̂(F, z0) is small enough, there exists a nearby zero of F
to which Newton’s method

zi+1 = zi − DF (zi)−1F (zi)
converge quadratically; see [2].

. Some useful quantities

α̂(F, z) = β(F, z)µ(F, z)1
2
( max
i=1,...,p

di)3/2‖z‖−1
†

β(F, z) =
∥∥DF (z)−1F (z)

∥∥
µ(F, z) = max{1, ‖F‖p‖DF (z)−1∆(d)(z)‖}

where di = deg Fi, ‖ · ‖F is a norm on polynomials, and
∆(d)(z) = Diag(d1/2

i ‖z‖
di−1
† ), and ‖z‖† =

√
1 + ‖z‖22.

. Proposition [2]: Consider F : Rp → Rp polynomial and

z0 ∈ Rp. If

α̂(F, z0) ≤
1
4
(13− 3

√
17) ≈ 0.15, (5)

then z0 is an approximate zero:

DF (zi) are invertible i.e., the sequence is well-defined,
there exists z̄ ∈ Rp s.t. F (z̄) = 0, ‖z0− z̄‖ ≤ 2β(F, z0),

‖zi − z̄‖ ≤
(1

2

)2i−1
‖z0 − z̄‖. (6)

The hybrid method

. Algorithm outline

1. Partial solve of the convex relaxation (Pr) e.g., with

coord. descent on Burer-Monteiro.

2. Extract point xk and compute its active set Ak ⊆ I .
3. Reduce the problem to

min
x

f (x) s.t. gi(x) = 0, i ∈ E ∪ Ak,

and apply Newton to its optimality conditions (2),

now smooth polynomial equations:

FAk
(x, λ) =

(
∇f (x)−

∑
i∈E∪Ak

λi∇gi(x)
gE∪Ak

(x)

)
= 0,

if the α-β test (5) is satisfied.

Then, (6) ensures superfast convergence: finding (x̂, λ̂)
ε-away from (x?, λ?) takes d5.82e = 6 iterations with
ε = 2.22 · 10−16 and ‖z − z?‖ = 10.

4. Check global optimality with e.g., the det. hierarchy.

Further solve (Pr) or increase r if x̂ is not a global
minimizer.

Algorithm 1 Hybrid algorithm

Require: (f, g), y0
r initial point for (Pr)

1: for k = 0, 1, 2, . . . do
2: yk

r ← partial solution of (Pr) from point yk−1
r

3: xk ← extracted point from SDP iterate yk
r

4: Ak ← A(xk)
5: λk ← λAk(xk)
6: if α̂

(
FAk, (xk, λk)

)
≤ 0.15 then

7: x̂k, λ̂k ← limit ofNewton’s method onFAk from

point (xk, λk)
8: if (x̂k, λ̂k) satisfies a condition for global opt.

then

9: return x̂k, λ̂k

10: else

11: Further solve (Pr) or increase r

Theorem [1, Th. 5.1]: Consider (POP ) that admits a
unique global minimizer x?. Then, algorithm 1 generates

(xk,Ak) such that
(yk) converges to the global minimizer x?.

If x? is qualified (LICQ and second-order growth), then there exists k̂
such that

the minimizer active set is identified: A
k̂

= A?,

Newton’s method converges quadratically (6),

and it returns the globally optimal primal-dual point

(x̂k̂, λ̂k̂).

Illustrations

. Problem: optimal power flow industrial instance

. Plots

fig. 4 shows coordinate descent on (Pr) then

Newton’s method on (POP ) after 2, 4, 8, … epochs
fig. 5 shows coordinate descent on (Pr), Newton’s

method on (POP ), and the hybrid method

. Observations

Coordinate descent on its own can be slow — fig. 5.

Newton’s method converges fast eventually

Newton’s method on its own can be slow — fig. 4 (CD
2 CD 4 CD 8), and fig. 5 (Newton)
The hybrid method, with the α-β test, improves upon
coord. descent and Newton’s method — fig. 5

The limit point attained by a first-then-second order

algorithm can vary substantially — fig. 4 right; indeed,

Newton’s method may be attracted to (first-order

stationary) points that are not the global minimizer

(see x1, x2 in fig. 1), and highlights the need for a
global optimality check
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Figure 4. Infeasibility and objective function over time for coordinate

descent on (Pr) then Newton’s method on (POP ) after 2, 4, 8, …
epochs.
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Figure 5. infeasibility and objective function over time for coordinate

descent on (Pr), Newton’s method on (POP ), and the hybrid
method.

More details in:

arxiv.org/abs/2305.16122
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