Hybrid Methods for global optimization of large-scale polynomials
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Problem & contributions

F* =min f(z)
st. gi(x) >0, i€z (POP)
gj(z)=0, jef&

where f, g;, g; : R" — R are polynomials.
> Problem
Find a global minimizer z* of large-scale (POP)

> Contribution

= bring together tools from different math disciplines
= a hybrid algorithm

1. a 1st order method on a convex relaxation (P.)

2. atheoretically grounded switch to Newton's method on

(POP)

Difficulties & approach

The global minimizer of large (POP) is provided by very
large SDP relaxations ().

> Interior Point Methods: go-to method for solving (P;)

» v/ fast convergence
» X not applicable (too high memory cost)

> First-order methods on (P,) — fig. 2

« v low per-iteration cost
= ~ slow convergence: provide rough solutions of (~)

> Newton on smooth polynomial equations — fig. 1

= =2 pOOr convergence away from solution
v/ superfast local convergence near solutions

> Active constraint identification — fig. 3

= v/ turns (POP) into smooth poly. eq. near z*

ILlustrative problem

min f(x) = —2.52% + 33139 — 2.525 — 31 + 5Ty — 2.5
zeR

st. gi(x) = —0.5:1:? + 29 >0 (1>
—0.0527 — 29 + 1.8 > 0
g3(x) = —0.05z5 + 1 + 0.129 + 0.35 > 0
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Figure 1. Left pane: problem (1). Right pane: Newton’s method:
slow away from (x*, \*), fast near (z*, \*).

1. Convex relaxations

2. Identifying active constraints

Algorithm 1 Hybrid algorithm

TLDR: at z*, some constraints are null and others positive.
A ={iel: gjz") =0}

can be detected from any point z near z*.

> The Lagrangian for (POP) is
L(z,)) = fz) = X' g(x),

where A € R™¢ x RTI Is the Lagrange multiplier vector.

> The first-order “KKT”" necessary optimality conditions:
there exist A\* such that

Vxﬁ(ﬂj*, )\*> — O
ge(x™) =0 (2)
0 < gr(z™) L A} > ()
where a L bmeans a'b = 0.

> Measure of the KKT residual at point (z, A):
r(@,A) = [V Lz, M| + [lge()]]
+ || [=gz(@)] 1 | + Mzaz(@)] + [T-Ag)+|

> From point z, the active set is chosen as
r(z, A)

w(x) = min
AeR™E xR T

Alz) = {i: gi(z) < —1/log(w(z))}

Theorem [1, Th. 3.2]: Consider z* that satisfies KKT (2), a
qgualification condition mrcq, and is an isolated critical point.
Then, there exists e > 0 such that

A(xz) = A* forall x :

|z — x™|| < e.

1 I={1}
= I ={1,2}
1 I=1{1,3}
7 = {1,2,3}

Figure 3. A(x) = A* = {1} for  near z*, for problem (1).

3. Newton’'s method, a-5

Require: (f,g), vy initial point for (P;)
1. fork=0,1,2,... do

2: y¥ < partial solution of (P;) from point yr—1

3: z¥ « extracted point from SDP iterate y*

4 A — A(zM)

5. A e X ()

6: if & (F.Ak’ (xk, )\k)) < (.15 then

7: 2k \E « limit of Newton’s method on F 4 from
point (z¥, \F)

8: if (2%, \¥) satisfies a condition for global opt.
hen

9. r return 2% \F

10: else

11:  Further solve (P,) or increase r

Theorem [1, Th. 5.1]: Consider (POP) that admits a
unique global minimizer z*. Then, algorithm 1 generates
(g, Ap) such that

= (y;.) converges to the global minimizer x™.

If ™ is qua”ﬁed (LICQ and second-order growth), then there exists k
such that

= the minimizer active set is identified: Ay = A,
= Newton's method converges quadratically (6),

= and it returns the globally optimal primal-dual point
(&5, NF).

ILlustrations

TLDR: (P,) is a sequence of increasingly large SDP prob-
lems, whose optimal value converge to f* from below.

> Moment relaxation, order r

pr=inf  Ly(f)
yERNng
s.t. My (y) = 0
Mr—r;(g5y) =0, je& ()
Mr—rj(gjw ~0, g€l
yo = 1

where r; = [(degg;)/2], y is a sequence indexed by ex-

ponents « € Nj. = {a € N : Y a; < 2r}, Ly : f =

Yoo faXY = > faya is the Riesz functional, and M (y)

and M,(g,y) are the moment and localizing matrices:
My(y)ler B = Ly(XX7) =y 5

My(giy)ler, B] = Ly(g; X XP) =" gi Yt 516
)

forall o, 8 € NJ,.
> Property [3]: p, converges to f* from below.

f (Pr) has a unique global minimizer z*, and ¢" is a nearly
optimal solution of (P,), then

lim Lyr(Xj) = CIS*
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Figure 2. First-order method on the third relaxation (P;) of (1).

Left pane: points " = (L(X1), L,1(X2))r € R?, where y* € RNG is
the k-th iterate of the 1st order method on (P;). Right pane:
distance between z* and the global minimizer z*. The dashed red line
indicates the first time the correct active set is detected.

TLDR: For a polynomial system F : RP — RP and zg € RP,
if a(F, zp) is small enough, there exists a nearby zero of F
to which Newton’s method

211 =2 — Dp(2) " F(2)
converge quadratically; see [2].

> Some useful quantities

1
&F, 2) = B(F, 2)u(F, 2)5( max_dp)*?|z]];
1=1,....,p

B(F,z) = ||Dp(2) ' F(2)]]
u(F, z) = max{1, ||FHPHDF(Z>_1A(d)<Z)||}
where d; = deg F}, || - || Is @ norm on polynomials, and
Ag)(2) = Diag(d)* |27, and [|z[l = /1 + 1=[2
(d) T

7

> Proposition [2]: Consider F' : RP — RP polynomial and
20 € RP.If

a(F, 2) < 2(13 _ 3yT7) ~ 0.15, (5)

then zg is an approximate zero:

* Dp(2;) are invertible i.e., the sequence is well-defined,
* there exists z € RP s.t. F(2) =0, ||z0 — z|| < 28(F, 2p),

(N
2 — 2] < (2) 20 — 2| (6)

The hybrid method

> Algorithm outline
1. Partial solve of the convex relaxation (P,) e.g., with
coord. descent on Burer-Monteiro.
2. Extract point z;. and compute its active set A, C 7.
3. Reduce the problem to

mg}n f(x) st gix)=0,

and apply Newton to its optimality conditions (2),
now smooth polynomial equations:

o (Y () = D iceua, MVoi@)\
Fale: ) = ( geuA, () ) -

if the - test (5) is satisfied.
Then, (6) ensures superfast convergence: finding (Z, 5\)
e-away from (2™, \*) takes [5.82] = 6 iterations with
e =222-10"1%and ||z — z*|| = 10.

4. Check global optimality with e.g., the det. hierarchy.
Further solve (P) or increase r if Z is not a global
minimizer.

e EUA,L,

> Problem: optimal power flow industrial instance
> Plots
= fig. 4 shows coordinate descent on () then

Newton’s method on (POP) after 2, 4, 8, ... epochs

= fig. 5 shows coordinate descent on (P;), Newton’s
method on (POP), and the hybrid method

> Observations

= Coordinate descent on its own can be slow — fig. 5.
= Newton's method converges fast eventually

= Newton's method on its own can be slow — fig. 4 (CD
2 CD 4 CD 8),and fig. 5 (Newton)

= The hybrid method, with the «-3 test, improves upon
coord. descent and Newton's method — fig. 5

= The limit point attained by a first-then-second order
algorithm can vary substantially — fig. 4 right; indeed,
Newton’s method may be attracted to (first-order
stationary) points that are not the global minimizer
(see z1, 9 in fig. 1), and highlights the need for a
global optimality check

Figure 4. Infeasibility and objective function over time for coordinate
descent on (P;) then Newton’s method on (POP) after 2, 4, 8, ...
epochs.
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Figure 5. infeasibility and objective function over time for coordinate
descent on (P;), Newton's method on (POP), and the hybrid
method.

More details in:
arxiv.org/abs/2305.16122
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