Hybrid Methods for global optimization of large-scale polynomials

J. Aspman¹

G. Bareilles¹ V. Kungurtsev¹

J. Mareček ¹ M. Takáč²

¹Czech Technical University ²Mohamed bin Zayed Univ. of A.I.

Problem & contributions
$\begin{aligned} f^{\star} &= \min_{x} f(x) \\ \text{s.t.} g_{i}(x) \geq 0, i \in \mathcal{I} \\ g_{j}(x) = 0, j \in \mathcal{E} \end{aligned} \qquad (\mathcal{POP})$
where $f, g_i, g_j : \mathbb{R}^n \to \mathbb{R}$ are polynomials. Problem
Find a global minimizer x^* of large-scale (\mathcal{POP})
 Contribution bring together tools from different math disciplines a hybrid algorithm 1. a 1st order method on a convex relaxation (P_r) 2. a theoretically grounded switch to Newton's method on (POP)

Difficulties & approach

2. Identifying active constraints
TLDR: at x^* , some constraints are null and others positive.
$\mathcal{A}^{\star} = \{ i \in \mathcal{I} : g_i(x^{\star}) = 0 \}$
can be detected from any point x near x^{\star} .
\triangleright The Lagrangian for (\mathcal{POP}) is
$\mathcal{L}(x,\lambda) = f(x) - \lambda^{\top} g(x),$
where $\lambda \in \mathbb{R}^{m_{\mathcal{E}}} \times \mathbb{R}^{m_{\mathcal{I}}}_+$ is the Lagrange multiplier vector.
▷ The first-order "KKT" necessary optimality conditions there exist λ^* such that
$\nabla_x \mathcal{L}(x^\star, \lambda^\star) = 0$
$g_{\mathcal{E}}(x^{\star}) = 0 \tag{2}$
$0 \le g_{\mathcal{I}}(x^{\star}) \perp \lambda_{\mathcal{I}}^{\star} \ge 0$
where $a \perp b$ means $a^{\top}b = 0$.
\triangleright Measure of the KKT residual at point (x, λ) :
$r(x,\lambda) = \ \nabla_x \mathcal{L}(x,\lambda)\ + \ g_{\mathcal{E}}(x)\ $

Algorithm 1 Hybrid algorithm

Require: $(f, g), y_r^0$ initial point for (P_r) 1: for k = 0, 1, 2, ... do $y_r^k \leftarrow \text{partial solution of } (P_r) \text{ from point } y_r^{k-1}$ $x^k \leftarrow \text{extracted point from SDP iterate } y_r^k$ 3: $\mathcal{A}^k \leftarrow \mathcal{A}(x^k)$ 4: $\lambda^k \leftarrow \lambda_{\mathcal{A}^k}(x^k)$ 5: if $\hat{\alpha}\left(F_{\mathcal{A}^k}^k, (x^k, \lambda^k)\right) \leq 0.15$ then 6: $\hat{x}^k, \hat{\lambda}^k \leftarrow \text{limit of Newton's method on } F_{\mathcal{A}^k}$ from 7: point (x^k, λ^k) if $(\hat{x}^k, \hat{\lambda}^k)$ satisfies a condition for global opt. 8: then return \hat{x}^k , $\hat{\lambda}^k$ 9: else 10: Further solve (P_r) or increase r 11:

Theorem [1, Th. 5.1]: Consider (\mathcal{POP}) that admits a unique global minimizer x^* . Then, algorithm 1 generates (x_k, \mathcal{A}_k) such that

The global minimizer of large (\mathcal{POP}) is provided by very large SDP relaxations (P_r) .

- \triangleright Interior Point Methods: go-to method for solving (P_r)
- ✓ fast convergence
- \times not applicable (too high memory cost)

 \triangleright First-order methods on (P_r) – fig. 2

- ✓ low per-iteration cost
- \approx slow convergence: provide rough solutions of (P_r)
- \triangleright Newton on smooth polynomial equations fig. 1
- \approx poor convergence away from solution
- ✓ superfast local convergence near solutions
- ▷ Active constraint identification fig. 3
- \checkmark turns (\mathcal{POP}) into smooth poly. eq. near x^*

Illustrative problem

$$\min_{x \in \mathbb{R}^2} f(x) = -2.5x_1^2 + 3x_1x_2 - 2.5x_2^2 - 3x_1 + 5x_2 - 2.5$$

s.t. $g_1(x) = -0.5x_1^3 + x_2 \ge 0$
 $g_2(x) = -0.05x_1^2 - x_2 + 1.8 \ge 0$
 $g_3(x) = -0.05x_2^2 + x_1 + 0.1x_2 + 0.35 \ge 0$ (1)

 $+ \left\| \left[-g_{\mathcal{I}}(x) \right]_{+} \right\| + \left| \lambda_{\mathcal{I}}^{T} g_{\mathcal{I}}(x) \right| + \left\| \left[-\lambda_{\mathcal{I}} \right]_{+} \right\|$

 \triangleright From point *x*, the active set is chosen as

$$\omega(x) = \min_{\lambda \in \mathbb{R}^{m} \mathcal{E} \times \mathbb{R}^{m}_{+}} r(x, \lambda)$$
$$\mathcal{A}(x) = \{i : g_i(x) \le -1/\log(\omega(x))\}$$

Theorem [1, Th. 3.2]: Consider x^* that satisfies KKT (2), a qualification condition MFCQ, and is an isolated critical point. Then, there exists $\epsilon > 0$ such that

 $\mathcal{A}(x) = \mathcal{A}^{\star} \quad \text{for all } x : \|x - x^{\star}\| < \epsilon.$

Figure 3. $\mathcal{A}(x) = \mathcal{A}^* = \{1\}$ for x near x^* , for problem (1).

3. Newton's method, α - β

TLDR: For a polynomial system $F : \mathbb{R}^p \to \mathbb{R}^p$ and $z_0 \in \mathbb{R}^p$, if $\hat{\alpha}(F, z_0)$ is small enough, there exists a nearby zero of F to which Newton's method

$$z_{i+1} = z_i - D_F(z_i)^{-1} F(z_i)$$

• (y_k) converges to the global minimizer x^* .

If x^{\star} is qualified (LICQ and second-order growth), then there exists \hat{k} such that

- the minimizer active set is identified: $\mathcal{A}_{\hat{k}} = \mathcal{A}^{\star}$,
- Newton's method converges quadratically (6),
- and it returns the *globally* optimal primal-dual point $(\hat{x}^k, \hat{\lambda}^k).$

Illustrations

▷ Problem: optimal power flow industrial instance

⊳ Plots

- fig. 4 shows coordinate descent on (P_r) then Newton's method on (\mathcal{POP}) after 2, 4, 8, ... epochs
- fig. 5 shows coordinate descent on (P_r) , Newton's method on (\mathcal{POP}) , and the hybrid method

▷ Observations

- Coordinate descent on its own can be slow fig. 5.
- Newton's method converges fast eventually
- Newton's method on its own can be slow fig. 4 (CD 2 CD 4 CD 8), and fig. 5 (Newton)
- The hybrid method, with the α - β test, improves upon coord. descent and Newton's method – fig. 5
- The limit point attained by a first-then-second order

Figure 1. Left pane: problem (1). Right pane: Newton's method: slow away from $(x^{\star}, \lambda^{\star})$, fast near $(x^{\star}, \lambda^{\star})$.

1. Convex relaxations

TLDR: (P_r) is a sequence of increasingly large SDP problems, whose optimal value converge to f^* from below.

 \triangleright Moment relaxation, order r

 $\rho_r = \inf_{y \in \mathbb{R}^{\mathbb{N}_{2r}^n}} L_y(f)$ $M_r(y) \succeq 0$ s.t. (P_r) $M_{r-r_j}(g_j y) = 0, \quad j \in \mathcal{E}$ $M_{r-r_j}(g_j y) \succeq 0, \quad j \in \mathcal{I}$ $y_0 = 1$

where $r_j = \lceil (\deg g_j)/2 \rceil$, y is a sequence indexed by exponents $\alpha \in \mathbb{N}_{2r}^n = \{ \alpha \in \mathbb{N}^n : \sum \alpha_i \leq 2r \}, L_y : f =$ $\sum_{\alpha} f_{\alpha} X^{\alpha} \mapsto \sum_{\alpha} f_{\alpha} y_{\alpha}$ is the **Riesz functional**, and $M_d(y)$ and $M_d(g_i y)$ are the **moment** and **localizing matrices**:

 $M_d(y)[\alpha,\beta] = L_y(X^{\alpha}X^{\beta}) = y_{\alpha+\beta}$ $M_d(g_j y)[\alpha,\beta] = L_y(g_j X^{\alpha} X^{\beta}) = \sum g_{j,\delta} y_{\alpha+\beta+\delta},$ for all $\alpha, \beta \in \mathbb{N}^n_d$.

l+1converge quadratically; see [2].

▷ Some useful quantities

$$\begin{aligned} \hat{\alpha}(F,z) &= \beta(F,z)\mu(F,z)\frac{1}{2}(\max_{i=1,...,p}d_i)^{3/2} \|z\|_{\dagger}^{-1} \\ \beta(F,z) &= \left\| D_F(z)^{-1}F(z) \right\| \\ \mu(F,z) &= \max\{1, \|F\|_p \|D_F(z)^{-1}\Delta_{(d)}(z)\|\} \end{aligned}$$
where $d_i = \deg F_i$, $\|\cdot\|_F$ is a norm on polynomials, and $\Delta_{(d)}(z) = \operatorname{Diag}(d_i^{1/2} \|z\|_{\dagger}^{d_i-1})$, and $\|z\|_{\dagger} = \sqrt{1 + \|z\|_2^2}. \end{aligned}$

 \triangleright **Proposition** [2]: Consider $F : \mathbb{R}^p \to \mathbb{R}^p$ polynomial and $z_0 \in \mathbb{R}^p$. If

$$\hat{\alpha}(F, z_0) \le \frac{1}{4}(13 - 3\sqrt{17}) \approx 0.15,$$
(5)

then z_0 is an *approximate zero*:

• $D_F(z_i)$ are invertible *i.e.*, the sequence is well-defined, • there exists $\overline{z} \in \mathbb{R}^p$ s.t. $F(\overline{z}) = 0$, $||z_0 - \overline{z}|| \le 2\beta(F, z_0)$, $||z_i - \bar{z}|| \le \left(\frac{1}{2}\right)^{2^i - 1} ||z_0 - \bar{z}||.$ (6)

The hybrid method

▷ Algorithm outline

- 1. Partial solve of the convex relaxation (P_r) e.g., with coord. descent on Burer-Monteiro.
- 2. Extract point x_k and compute its active set $\mathcal{A}_k \subseteq \mathcal{I}$.

algorithm can vary substantially – fig. 4 right; indeed, Newton's method may be attracted to (first-order stationary) points that are not the global minimizer (see x_1 , x_2 in fig. 1), and highlights the need for a global optimality check

Figure 4. Infeasibility and objective function over time for coordinate descent on (P_r) then Newton's method on (\mathcal{POP}) after 2, 4, 8, ... epochs.

Figure 5. infeasibility and objective function over time for coordinate descent on (P_r) , Newton's method on (\mathcal{POP}) , and the hybrid method.

▷ **Property** [3]: ρ_r converges to f^* from below.

If (P_r) has a unique global minimizer x^* , and y^r is a nearly optimal solution of (P_r) , then

 $\lim_{r \to \infty} L_{y^r}(X_j) = x_j^\star$

Figure 2. First-order method on the third relaxation (P_3) of (1). Left pane: points $x^k = (L_{y^k}(X_1), L_{y^k}(X_2))_k \in \mathbb{R}^2$, where $y^k \in \mathbb{R}^{\mathbb{N}_6^2}$ is the k-th iterate of the 1st order method on (P_3) . Right pane: distance between x^k and the global minimizer x^* . The dashed red line indicates the first time the correct active set is detected.

3. Reduce the problem to

 $\min f(x) \quad \text{s.t.} \quad g_i(x) = 0, \quad i \in \mathcal{E} \cup \mathcal{A}_k,$

and apply Newton to its optimality conditions (2), now *smooth* polynomial equations:

$$F_{\mathcal{A}_k}(x,\lambda) = \begin{pmatrix} \nabla f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{A}_k} \lambda_i \nabla g_i(x) \\ g_{\mathcal{E} \cup \mathcal{A}_k}(x) \end{pmatrix} = 0$$

if the α - β test (5) is satisfied.

Then, (6) ensures superfast convergence: finding $(\hat{x}, \hat{\lambda})$ ϵ -away from $(x^{\star}, \lambda^{\star})$ takes [5.82] = 6 iterations with $\varepsilon = 2.22 \cdot 10^{-16}$ and $||z - z^*|| = 10$.

4. Check global optimality with *e.g.*, the det. hierarchy. Further solve (P_r) or increase r if \hat{x} is not a global minimizer.

More details in:

arxiv.org/abs/2305.16122

References

- [1] Johannes Aspman, Gilles Bareilles, Vyacheslav Kungurtsev, Jakub Mareček, and Martin Takáč. Hybrid methods in polynomial optimisation, 2023.
- [2] Felipe Cucker and Steve Smale. Complexity estimates depending on condition and round-off error. Journal of the ACM, 46(1):113–184, January 1999.
- [3] Jean Bernard Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization. Cambridge University Press, first edition, February 2015.
- [4] Christina Oberlin and Stephen J. Wright. Active Set Identification in Nonlinear Programming. SIAM Journal on Optimization, 17(2):577–605, January 2006.

FOCM Conference 2023, Paris

gilles.bareilles@fel.cvut.cz