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Linear inverse problems...

Xp is the signal of interest, only accessible through measures y, via a
(linear) forward model A and noise &:

y=Ax+¢§
Examples
» Image processing diffraction of objective, low-res./damaged sensor
» Medical imaging computerized tomography, MRI, EEG
» Seismic imaging wave propagation
» Machine learning / Statistics regression

P~

- -~
3D Visualization | Magma Chamber
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Linear inverse problems...

y=Ax +¢§

. are often ill posed.
= introduce prior knowledge on the structure of xg.

How? For some A > 0, some convex differentiable loss ¢, we minimize the
empirical risk penalized by some regularizer encoding prior information:

n
Xx* € arg min ZE(A;x,y,-) + A r(x) (ERM)
x i=1 ~
nonsmooth regularizer
smooth empirical risk

E.g.: if xg known to have many zero entries, r : x —

Ix[l1 = Z:Ll xj| is a common
choice.
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Prior knowledge ?

Prior knowledge | penalization function
sparsity r=1"1h
group sparsity r=1 "2
anti-sparsity r=1 "l
low-rank r=1 "1«
unit norm r=max(|| - |, — 1,0)

and combinations...

o Vaiter, S., Peyré, G., Fadili, J.: Low Complexity Regularization of Linear Inverse Problems, chap.
Sampling Theory, a Renaissance, pp. 103-153. Springer-Birkhiuser (2015)

In large scale cases, where problems are over determined, regularization improves

statistical properties (generalization, ...). E.g. LASSO regression
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Composite problems

Find x* € argmin,cgn flx) + gx)
smooth non smooth

We assume f & g are convex, there exists a unique minimizer.

Questions

» 1. How to formalize structure? Why is it interesting?
» 2. Can optimization algorithms detect structure?

» 3. How well do algorithms detect structure in practice? Can they be
improved?
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What is structure? Robustness to perturbations
Let's perturb a smooth and a non-smooth function with a smooth one:

\\

+£
g+ non-smooth g

smooth g / >

xxt

Optimality condition at point x* of:

g 0= Vg(x*) 0 € Og(x*)
—_————
F#0=x* #x* 9g(x*)#{-}=x*=x* is possible

A small enough perturbation to this nonsmooth function leaves its
minimizer unchanged.

g non diff. at x* <= robustness to perturbations <= structure
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Examples of structure

A '.1"",’.,

7
/
% %

g = max(|| - [l26 = 1,0)

Structured points are exactly points of non-differentiability of g.

Here:
» for g = || - ||1, structured points are the cartesian axes;
» for g = max(]| - ||2.6 — 1,0), structured subspace is {x : |[x|2¢ = 1}.
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» 1. How to formalize structure? Why is it interesting?

> The non-smoothness of g imposes some structure on minimizers;

> This structure formalizes as belonging or not to subspaces, where g is
non-differentiable;

> Structure matters statistically feature selection/reduction and
numerically smaller problem

» 2. Can optimization algorithms detect structure?
Given a composite problem and an optimization algorithm, under which

condition can we guarantee that its iterates reach the correct subspace in
finite time?

» 3. How well do algorithms detect structure in practice? Can they be improved?
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Step aside: what algorithms for composite minimization?

Find x* € argmin f(x) + g(x)
xERN

The non-smooth g is handled via its proximity operator.

| 1 2}
prox. (u) := argmin W)+ —|lw—u .
el = argmin { () + - o

Closed form / easily computable for many regularizers: || - ||1, || - [|«, TV, ..

We thus look at algorithms that write as

Uy = -+~

Xi = prox. . (uy) (Prox-based alg.)

which includes proximal gradient aka ISTA, accelerated proximal gradient
aka FISTA among others.
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Identification: an example

Consider sequences (uk), (xk = prox.(ux)) and a subspace M such that:
ug — u* X — X* = prox_ (u*) x*eM

Let's look at the set U = proxfgl(l\/l) = (I +~0g)(M):

| o)
VI g(x) = lIxllh = X0, Ixil
X
l l
| |
| ] uj — if uj >
X : [prox, . (u)]; = {o Tl sy
| | up+  ifup < —v
| |
: U= p‘rox“gl(l\/l) M is the y-axis.
I 1
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Identification: an example

Consider sequences (uk), (xk = prox.(ux)) and a subspace M such that:

U — u*

X — X* = prox_ (u*)

Let's look at the set U = proxfgl(l\/l) = (I +~0g)(M):

1

I

1

4/ :
Prox;.,

L

u*

O

1

1
U:p‘roxn‘gl(l\/l)

1

x*eM
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Identification: an example
Consider sequences (uk), (xk = prox.(ux)) and a subspace M such that:
ug — u* X — X* = prox_ (u*) x*eM
Let's look at the set U = proxfgl(l\/l) = (I +~9g)(M):

u*

LM @l
L "4/"“?"“-\\1

il

!

U= p‘rox“gl(l\/l)
1

Identification is ensured: in finite

. Identification may not happen,
time meatt Yy PP

depending on the iterates
u € B(u*,e) = xx € M trajectory.
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Contribution: a sufficient condition for identification

Lemma (ldentification)

Consider sequences (ux), (xk = prox..(ux)) and a manifold M such that:
ue—ut xe—= xFEprox (ut)  x*eM
If
Je > 0 such that for all u € B(u*,¢), prox ,(u) € M, (QQC)
then, after some finite time, x, € M.

Thus,

» if the problem satisfies (QC), any converging prox-based algorithm
will identify the minimizer structure;
» otherwise, no guarantee of recovering the minimizer structure.

Note: known in the partial smoothness theory.
Partial smoothness + 0 € ri (0g + Vf)(x*) = (QC)
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» 1. How to formalize structure? Why is it interesting?

» The non-smoothness of g imposes some structure on minimizers;
» This structure formalizes as belonging or not to subspaces, where g is

non-differentiable;
» Structure matters statistically feature selection/reduction and numerically

smaller problem
» 2. Can optimization algorithms detect structure?

> if the problem satisfies (QC), any converging prox-based algorithm
will identify the minimizer structure; otherwise, no guarantee of
recovering the minimizer structure.

Theory is able to capture whether finite time identification is guaranteed
or not for a given problem.

» 3. How well do algorithms detect structure in practice? Can they
be improved?
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Prox-based algorithms: PG and APG

Proximal Gradient Accelerated proximal gradient
Uk = xk = YV F(xe) Ukyr = Yk — YV F(yk)
Xk+1 = prox*yg(uk+1) Xk+1 = pl’Ong(ukH)

Vi1 = Xir1 + 1 (X1 — X)
N———

inertia / extrapolation

PG APG
F(x) — F* O(1/k)  O(1/k)
[ O(1/k)  O(1/k)
iterates convergence yes yes
monotone functional CV yes no
monotone iterates CV yes no

& Nesterov: A method for solving the convex programming problem with convergence rate
O(1/k?). Dokladi A.N. Sssr (1983)

& Beck, Teboulle: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM journal on Imaging Sciences (2009)

& Chambolle, Dossal: On the convergence of the iterates of “FISTA". Journal of Optimization
theory and Applications (2015)
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min |[Ax — b||5 + Ar(x), with A € R?*2
xX€E

2 \ \ \
¥
M; —e— Proximal Gradient ]
—+— Accel. Proximal Gradient %
1L % 7 N e
r(x) = lIx[lx
M; = y-axis;
. Mj = x-axis
0 (two linear manifolds)
>
6
3
1
-1 0 1 2

This problem is qualified.
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with A € R?*?

min ||Ax — b||3 + Ar(x),
x€R?

087F— == a7 7
1| —e— Proximal Gradient
9.1. 79| —— Accel. Proximal Gradient
2o 0~
0.87 ( 0, 200
\g\} N G\M
. x> \
0.87 1 .
? |
: S
@ 2.
0.87 - IS ? |
NS NN SIC 9.1-1077
s ~6
Do "~ ‘ ‘ L ‘ ]
—0.63 —0.63 —0.63 —0.63

This problem is not qualified.

r(x) =
max(0, ||x||2.6 — 1)
M= SH'Hz,a(Ov 1)

(one curved manifold)
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Observations

Effect of acceleration on identification:
(i) Overshooting of to-be identified manifold

(ii) Misfit of linear extrapolation with curved subspace

N X X

(iii) Exploratory behavior of acceleration

Could we get the best of both algorithms?
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Contribution: a variant of APG

Each iteration, T € {0, 1} decides whether to accelerate or not.

Xir1 = Prox, g (v —vVF(y)) = 7. ()

{ Xer1 + k1 (ksr —xx) i Te=1

Ykt = Xk+1 if Tk =0

We want:
» T, =1 asymptotically, to get the accelerated O(1/k?) rate;

» T, = 0 only when acceleration is harmful.

For analysis reasons, we allow acceleration only when

| 75 (vk—1) — ye—1lI> < ¢ and F(T+(yk—1)) < F(xo)
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Proposed tests

Xiep1 = Prox. g (v — YV F(yi)) = 7 (vi)
. Xk+1 + Oék+1(Xk+1 — Xk) fTe=1
Y1 = s if Tx =0

(i) “Overshooting of to-be identified manifold” No acceleration i.e.
Ti = 0 when

{Xk ZM for some M € C
Xk+1 €M

(ii) “Misfit of linear extrapolation with curved subspace” No
acceleration i.e. T2 =0 when

Ty (1) €M for some M € C
T (X1 + akp1(Xks1 — xx)) € M

Theorem (informal): \We maintain the accelerated rate O(1/k?) for
qualified problems, proximal gradient rate O(1/k) otherwise.
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Numerical experiments
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Numerical experiments
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Take-home messages
» Proximal methods can identify the structure of composite problems;
» This structure bears value statistically feature selection and numerically
dimensionality reduction;
» Acceleration may harm identification of proximal gradient... we
proposed a more stable proximal algorithm with accelerated rate.
Perspectives
» Leverage the progressive identification to improve optimization
algorithms;
» ldentification with two non-smooth functions?

B. & lutzeler: On the Interplay between Acceleration and Identification

for the Proximal Gradient algorithm, Computational Optimization and
Applications, 2020. https://arxiv.org/abs/1909.08944

Thank you!

Gilles BAREILLES — gbareilles.fr
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