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Linear inverse problems...

x0 is the signal of interest, only accessible through measures y , via a
(linear) forward model A and noise ξ:

y = Ax0 + ξ

Examples

I Image processing diffraction of objective, low-res./damaged sensor

I Medical imaging computerized tomography, MRI, EEG

I Seismic imaging wave propagation

I Machine learning / Statistics regression
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Linear inverse problems...

y = Ax0 + ξ

... are often ill posed.
⇒ introduce prior knowledge on the structure of x0.

How? For some λ > 0, some convex differentiable loss `, we minimize the
empirical risk penalized by some regularizer encoding prior information:

x? ∈ arg min
x

n∑
i=1

`(Aix , yi)︸ ︷︷ ︸
smooth empirical risk

+ λ r(x)︸︷︷︸
nonsmooth regularizer

(ERM)

E.g.: if x0 known to have many zero entries, r : x 7→ ‖x‖1 =
∑n

i=1 |xi | is a common
choice.
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Prior knowledge ?

Prior knowledge penalization function
sparsity r = ‖ · ‖1

group sparsity r = ‖ · ‖1−2
anti-sparsity r = ‖ · ‖∞

low-rank r = ‖ · ‖∗
unit norm r = max(‖ · ‖p − 1, 0)

...
...

and combinations...

� Vaiter, S., Peyré, G., Fadili, J.: Low Complexity Regularization of Linear Inverse Problems, chap.
Sampling Theory, a Renaissance, pp. 103–153. Springer-Birkhäuser (2015)

In large scale cases, where problems are over determined, regularization improves
statistical properties (generalization, ...). E.g. LASSO regression
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Composite problems

Find x? ∈ arg minx∈Rn f (x) + g(x)

smooth non smooth
We assume f & g are convex, there exists a unique minimizer.

Questions

I 1. How to formalize structure? Why is it interesting?
I 2. Can optimization algorithms detect structure?
I 3. How well do algorithms detect structure in practice? Can they be

improved?
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What is structure? Robustness to perturbations
Let’s perturb a smooth and a non-smooth function with a smooth one:

x?x?

smooth g

g + ε
2 ‖ · ‖2

x? = x?
non-smooth g

g + ε
2 ‖ · ‖2

Optimality condition at point x? of:
g 0 = ∇g(x?) 0 ∈ ∂g(x?)

g + ε
2 ‖ · ‖2 0 = ∇g(x?) + εx?︸ ︷︷ ︸

ε6=0⇒x? 6=x?

0 ∈ ∂g(x?) + εx?︸ ︷︷ ︸
∂g(x?) 6={·}⇒x?=x? is possible

A small enough perturbation to this nonsmooth function leaves its
minimizer unchanged.

g non diff. at x? ⇐⇒ robustness to perturbations ⇐⇒ structure
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Examples of structure
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g = max(‖ · ‖2.6 − 1, 0)

Structured points are exactly points of non-differentiability of g .

Here:
I for g = ‖ · ‖1, structured points are the cartesian axes;
I for g = max(‖ · ‖2.6 − 1, 0), structured subspace is {x : ‖x‖2.6 = 1}.
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I 1. How to formalize structure? Why is it interesting?
. The non-smoothness of g imposes some structure on minimizers;
. This structure formalizes as belonging or not to subspaces, where g is

non-differentiable;
. Structure matters statistically feature selection/reduction and

numerically smaller problem

I 2. Can optimization algorithms detect structure?

Given a composite problem and an optimization algorithm, under which
condition can we guarantee that its iterates reach the correct subspace in

finite time?

I 3. How well do algorithms detect structure in practice? Can they be improved?

7 / 21



Composite optim in ML / inverse problems Non smoothness, structure and identification Identification in practice

Step aside: what algorithms for composite minimization?

Find x? ∈ arg min
x∈Rn

f (x) + g(x)

The non-smooth g is handled via its proximity operator:

proxγg(u) := arg min
w∈Rn

{
g(w) + 1

2γ
‖w − u‖2

}
.

Closed form / easily computable for many regularizers: ‖ · ‖1, ‖ · ‖∗, TV , …

We thus look at algorithms that write as∣∣∣∣ uk = · · ·
xk = proxγg(uk) (Prox-based alg.)

which includes proximal gradient aka ISTA, accelerated proximal gradient
aka FISTA among others.
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Identification: an example

Consider sequences (uk), (xk = proxγg(uk)) and a subspace M such that:

uk → u? xk → x? , proxγg(u?) x? ∈ M

Let’s look at the set U = prox−1
γg (M) = (I + γ∂g)(M):

U = prox−1
γg (M)

u?

x?

M g(x) = ‖x‖1 =
∑n

i=1 |xi |

[proxγ|·|(u)]i =
{

ui − γ if ui > γ

0 if − γ ≤ ui ≤ γ

ui + γ if ui < −γ

M is the y-axis.

Identification is ensured: in finite
time

uk ∈ B(u?, ε) ⇒ xk ∈ M

Identification may not happen,
depending on the iterates
trajectory.
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Contribution: a sufficient condition for identification

Lemma (Identification)
Consider sequences (uk), (xk = proxγg(uk)) and a manifold M such that:

uk → u? xk → x? , proxγg(u?) x? ∈ M

If

∃ε > 0 such that for all u ∈ B(u?, ε), proxγg(u) ∈ M, (QC)

then, after some finite time, xk ∈ M.

Thus,
I if the problem satisfies (QC), any converging prox-based algorithm

will identify the minimizer structure;
I otherwise, no guarantee of recovering the minimizer structure.

Note: known in the partial smoothness theory.
Partial smoothness + 0 ∈ ri (∂g + ∇f )(x?) ⇒ (QC)
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I 1. How to formalize structure? Why is it interesting?
I The non-smoothness of g imposes some structure on minimizers;
I This structure formalizes as belonging or not to subspaces, where g is

non-differentiable;
I Structure matters statistically feature selection/reduction and numerically

smaller problem

I 2. Can optimization algorithms detect structure?
. if the problem satisfies (QC), any converging prox-based algorithm

will identify the minimizer structure; otherwise, no guarantee of
recovering the minimizer structure.

Theory is able to capture whether finite time identification is guaranteed
or not for a given problem.

I 3. How well do algorithms detect structure in practice? Can they
be improved?
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Prox-based algorithms: PG and APG

Proximal Gradient∣∣∣∣ uk+1 = xk − γ∇f (xk)
xk+1 = proxγg(uk+1)

Accelerated proximal gradient∣∣∣∣∣∣∣∣∣
uk+1 = yk − γ∇f (yk)
xk+1 = proxγg(uk+1)
yk+1 = xk+1 + αk+1(xk+1 − xk)︸ ︷︷ ︸

inertia / extrapolation

PG APG
F (xk) − F ? O(1/k) O(1/k2)

‖xk − xk−1‖2 O(1/k) O(1/k2)
iterates convergence yes yes

monotone functional CV yes no
monotone iterates CV yes no

� Nesterov: A method for solving the convex programming problem with convergence rate
O(1/k2). Dokladi A.N. Sssr (1983)
� Beck, Teboulle: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM journal on Imaging Sciences (2009)
� Chambolle, Dossal: On the convergence of the iterates of “FISTA”. Journal of Optimization
theory and Applications (2015)
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min
x∈R2

‖Ax − b‖2
2 + λr(x), with A ∈ R2×2
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This problem is qualified.
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min
x∈R2

‖Ax − b‖2
2 + λr(x), with A ∈ R2×2
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Observations

Effect of acceleration on identification:
(i) Overshooting of to-be identified manifold %

(ii) Misfit of linear extrapolation with curved subspace %

(iii) Exploratory behavior of acceleration !

Could we get the best of both algorithms?
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Contribution: a variant of APG

Each iteration, Tk ∈ {0, 1} decides whether to accelerate or not.∣∣∣∣∣∣
xk+1 = proxγg(yk − γ∇f (yk)), Tγ(yk)

yk+1 =
{

xk+1 + αk+1(xk+1 − xk) if Tk = 1
xk+1 if Tk = 0

We want:
I Tk = 1 asymptotically, to get the accelerated O(1/k2) rate;
I Tk = 0 only when acceleration is harmful.

For analysis reasons, we allow acceleration only when

‖ Tγ(yk−1) − yk−1‖2 ≤ ζ and F(Tγ(yk−1)) ≤ F(x0)
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Proposed tests∣∣∣∣∣∣
xk+1 = proxγg(yk − γ∇f (yk)), Tγ(yk)

yk+1 =
{

xk+1 + αk+1(xk+1 − xk) if Tk = 1
xk+1 if Tk = 0

(i) “Overshooting of to-be identified manifold” No acceleration i.e.
T1

k = 0 when {
xk 6∈ M
xk+1 ∈ M

for some M ∈ C

(ii) “Misfit of linear extrapolation with curved subspace” No
acceleration i.e. T2

k = 0 when{
Tγ(xk+1) ∈ M
Tγ(xk+1 + αk+1(xk+1 − xk)) 6∈ M

for some M ∈ C

Theorem (informal): We maintain the accelerated rate O(1/k2) for
qualified problems, proximal gradient rate O(1/k) otherwise.
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Numerical experiments
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Numerical experiments
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Take-home messages
I Proximal methods can identify the structure of composite problems;
I This structure bears value statistically feature selection and numerically

dimensionality reduction;
I Acceleration may harm identification of proximal gradient... we

proposed a more stable proximal algorithm with accelerated rate.
Perspectives

I Leverage the progressive identification to improve optimization
algorithms;

I Identification with two non-smooth functions?

B. & Iutzeler: On the Interplay between Acceleration and Identification
for the Proximal Gradient algorithm, Computational Optimization and
Applications, 2020. https://arxiv.org/abs/1909.08944

Thank you!

Gilles Bareilles – gbareilles.fr
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