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Composite optimization: F (x) = g(c(x))

Includes: max. of C2 functions, max. eigenvalue

Observations
I nondifferentiability points organize in smooth

manifolds
I F is smooth on them

These are structure manifolds. � Lewis ’02

Many algorithms for nonsmooth (composite)
optimization:

I prox-linear methods � Lewis Wright, ’16,
I bundle methods � Mifflin Sagastizábal, ’05,
I gradient sampling � Burke Lewis Overton, ’05,
I nonsmooth BFGS � Lewis Overton, ’13

Most algorithms are oblivious to structure, we try to
leverage it.

minx F (x) = max(c1(x), c2(x))
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Composite problem

Find x? ∈ arg min
x∈Rn

F (x) = g ◦ c(x), with g nonsmooth and c a smooth mapping

Finding a minimizer of F nonsmooth can be seen as:
I find the right structure

e.g. which ci are maximum

I leverage the right structure to minimize F
e.g. solve smooth problem with smooth constraints

→ We replace (nonsmooth) minimization
by smooth constrained minimization.

Challenges:
1. How to detect the optimal structure M? 3 x??
2. How to exploit structure to better minimize F ?
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Prox. for finding structure

proxγg (y) , arg min
u

{
g(u) + 1

2γ ‖u − y‖2
}

For simple functions, the proximity operator can be computed exactly

Example (Prox of max)

[proxγ max(y)]i =
{
τ if yi ≥ τ
yi else

where τ solves
∑
{i :yi>τ}(yi − τ) = γ

Structure manifold:

MI = {y : yi = max(y) for i ∈ I}
y1 y2 y3 y4

4

8
τ = 7.5

proxγmax(y) = (7, 4, τ , 3)

γ = 0.5

Structure: MI with I = {3}

→ Computing proxγg (y) also gives structure information M3 proxγg (y).
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Identification with explicit prox

Lemma (B., Iutzeler, Malick, ’22)
Consider a function g and point ȳ with structure Mg

that meet two technical assumptions. For all y near ȳ ,

proxγg (y) ∈Mg for all γ ∈ [ϕg (distMg (y)), Γg ]

where Γg > 0 and ϕg (t) = 1
cri

t +O(t2).

Technical assumptions: normal ascent, control on projection curves
on the manifold.

Share similarities with � Lewis ’02, � Lewis Hare ’04, � Vaiter Peyré
Fadili ’17
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proxγg (y) ∈Mg for all γ ∈ [ϕg (distMg (y)), Γg ]

where Γg > 0 and ϕg (t) = 1
cri

t +O(t2).

Technical assumptions: normal ascent, control on projection curves
on the manifold.

Share similarities with � Lewis ’02, � Lewis Hare ’04, � Vaiter Peyré
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No prox. of F
The prox of F = g ◦ c is not available (composition is complicated), but we do have proxγg .
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Observation: proxγg can map points to Mg .
The structure naturally lies in the intermediate space.
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Back to the optimization space

Theorem (B., Iutzeler, Malick, ’22)
Consider g, c and a point x̄ such that c(x̄) has structure manifold Mg and c and Mg are
transversal at c(x̄). For all x near x̄ ,

proxγg (c(x)) ∈Mg for all γ ∈ [ϕ(distM(x)), Γ]

where Γ > 0 and ϕ(t) = cmap
cri

t +O(t2). Furthermore, M = c−1(Mg ).
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Detection with multiple manifolds
Generally, there are more than one manifolds near x?.
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{x : prox1.0 max(c(x)) ∈ Mg?} 3 x?

M? =M123 M? =M23

Importance of γ: too small, detection of M? only near x?; too large, no detection near x?.

Take-away: We detect M? 3 x? with proxγg ◦ c(·) with the right range of steps.

→ How to choose the step in practice?

7 / 13



Introduction Detecting structure Exploiting structure Numerics Conclusion

Detection with multiple manifolds
Generally, there are more than one manifolds near x?.

−2 −1 0 1 2

−1

0

1

1

1

2

2

2

3

3

3

34

4

4

4
4

5

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

10

10

10

x?

M12

M13

M23

M123

{x : prox2.0 max(c(x)) ∈ Mg?} 3 x?

−2 −1 0 1 2

−1

0

1

1

1

2
2

2

2

3

3

3 3

3

4 4

4

4

4

5
5

5

55

6

6

6

6

7

7

7

7

8

8

8

10

10

x?

M12

M13

M23

M123

{x : prox2.0 max(c(x)) ∈ Mg?} 3 x?

M? =M123 M? =M23

Importance of γ: too small, detection of M? only near x?; too large, no detection near x?.

Take-away: We detect M? 3 x? with proxγg ◦ c(·) with the right range of steps.

→ How to choose the step in practice?

7 / 13



Introduction Detecting structure Exploiting structure Numerics Conclusion

Detection with multiple manifolds
Generally, there are more than one manifolds near x?.

−2 −1 0 1 2

−1

0

1

1

1

2

2

2

3

3

3

34

4

4

4
4

5

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

10

10

10

x?

M12

M13

M23

M123

{x : prox3.0 max(c(x)) ∈ Mg?} 3 x?

−2 −1 0 1 2

−1

0

1

1

1

2
2

2

2

3

3

3 3

3

4 4

4

4

4

5
5

5

55

6

6

6

6

7

7

7

7

8

8

8

10

10

x?

M12

M13

M23

M123

{x : prox3.0 max(c(x)) ∈ Mg?} 3 x?

M? =M123 M? =M23

Importance of γ: too small, detection of M? only near x?; too large, no detection near x?.

Take-away: We detect M? 3 x? with proxγg ◦ c(·) with the right range of steps.

→ How to choose the step in practice?

7 / 13



Introduction Detecting structure Exploiting structure Numerics Conclusion

Detection with multiple manifolds
Generally, there are more than one manifolds near x?.

−2 −1 0 1 2

−1

0

1

1

1

2

2

2

3

3

3

34

4

4

4
4

5

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

10

10

10

x?

M12

M13

M23

M123

{x : prox3.0 max(c(x)) ∈ Mg?} 3 x?

−2 −1 0 1 2

−1

0

1

1

1

2
2

2

2

3

3

3 3

3

4 4

4

4

4

5
5

5

55

6

6

6

6

7

7

7

7

8

8

8

10

10

x?

M12

M13

M23

M123

{x : prox3.0 max(c(x)) ∈ Mg?} 3 x?

M? =M123 M? =M23

Importance of γ: too small, detection of M? only near x?; too large, no detection near x?.

Take-away: We detect M? 3 x? with proxγg ◦ c(·) with the right range of steps.

→ How to choose the step in practice? 7 / 13



Introduction Detecting structure Exploiting structure Numerics Conclusion

Introduction

Detecting structure

Exploiting structure

Numerics

Conclusion

7 / 13



Introduction Detecting structure Exploiting structure Numerics Conclusion

Nonsmooth to smooth
I Structure manifolds provide second order models of the nonsmooth F :

M is smooth ∃h smooth s.t. x ∈M⇔ h(x) = 0
F smooth on M ∃F̃ smooth s.t. F |M ≡ F̃ on M

min
x

F (x) and M turns into min
x

F̃ (x) s.t. h(x) = 0.

Example (F = max(c1, c2))
For structure M12,

I h = c1 − c2

I F̃ (x) = (c1 + c2)/2

I Many tools for smooth constrained optimization: Interior Point Methods, Sequential
Quadratic Programming, Augmented Lagrangian Methods, . . .

8 / 13
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Newton step and algorithm
Iteration k:
I Compute proxγk g (c(xk )) and obtain Mk .

I With structure candidate Mk : SQP step on minx F̃k (x) s.t. hk (x) = 0.

dSQP
k = arg min

d∈Rn
〈∇F̃k (xk ), d〉+ 1

2 〈∇
2
xx Lk (xk , λk (xk ))d , d〉

s.t. hk (xk ) + D hk (xk )d = 0

where Lk (x , λ) = F̃k (x) + 〈λ, hk (x)〉, and λk (xk ) = arg minλ∈Rr
∥∥∇F̃k (xk ) +

∑m
i=1 λi∇hk,i (xk )

∥∥2

Set xk+1 = xk + dSQP
k if F (xk + dSQP

k ) < F (xk ).

I γk+1 = γk
2

Similar works with heuristic structure detection: � Womersley Fletcher ’86 for max, � Noll Apkarian, ’05 for λmax .
9 / 13
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Local exact structure identification and quadratic convergence

Theorem (B., Iutzeler, Malick, ’22)
Consider a function F = g ◦ c and x? a strong minimizer with structure manifold M? that
meets the technical assumptions.
If x0 and F (x0) are close enough to x? and F (x?), γ0 is large enough and no Maratos effect
happens, then there exists C > 0 such that:

Mk =M? and ‖xk+1 − x?‖ ≤ C‖xk − x?‖2 for all k large enough.

Proof idea
I if Mk =M?, the SQP step brings quadratic improvement
I since γk decreases, at some point γk ∈ [ϕ(distM(xk )), Γ]
I to stay in that region, decrease γ not too fast

γ

0
0

distM(·)

ϕ

Γ
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Quadratic convergence

min
x∈R10

max
i=1,··· ,5

(ci (x))

M? = {x : c2(x) = · · · = c5(x)}

Historical maxquad problem � HULL ’93

min
x∈R25

λmax

(
A0 +

n∑
i=1

xiAi

)
M? = {x : λmax(c(x)) has multiplicity 3}

Matrices are symmetric, 50× 50

0 1 2 3 4 5
·10−3

10−17

10−11

10−5

101

time (s)

F(
x k

)−
F?

MaxQuad

0 0.2 0.4 0.6 0.8 1
10−15

10−11

10−7

10−3

time (s)

F(
x k

)−
F?

Eigmax

Gradient Sampling nsBFGS LocalNewton
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Proximal identification
Corollary: There exists L > 0, ε > 0 such that

‖x − x?‖ ≤ ε and L‖x − x?‖ ≤ γ ≤ Γ =⇒ proxγg (c(x)) ∈Mg?.

This checks out in practice:

10−33 10−26 10−19 10−12 10−5
10−49

10−30

10−11

‖xk − x?‖

MaxQuad

10−40 10−32 10−24 10−16 10−8 100
10−67

10−42

10−17

‖xk − x?‖

Eigmax

10−710−610−510−410−310−2
10−1

100

101

102

inf{γ : proxγg (c(xk)) ∈ Mg?} sup{γ : proxγg (c(xk)) ∈ Mg?} γk
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Conclusion
Take-away messages

I Proximal methods identify smooth structure in nonsmooth composite problems
I We show local exact identification and quadratic rate for g ◦ c, where g is prox-simple, no

convexity required

B. & Iutzeler & Malick: Harnessing structure in composite nonsmooth minimization
soon

Work in progress and perspectives
I Drop the locality: i) need more information to identify, ii) globalize constrained Newton

Thank you!

Gilles Bareilles – gbareilles.fr
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Technical assumptions
Normal ascent: g increases at ȳ on normal directions:

0 ∈ ri projNȳMg ∂g(ȳ)

Manifold curves: A function g with structure Mg at ȳ satisfies the curve property if there
exists a neighborhood N ȳ of ȳ and T > 0 such that, for any smooth application
e : N ȳ ×[0,T ]→Mg verifying e(y , 0) = projMg (y) and d

dt e(y , 0) = − grad g(projMg (y)),
there holds

‖projNe(y,t)Mg (e(y , t)− y)‖ ≤ distMg (y) + L̃ t2 for all y ∈ N ȳ , t ∈ [0,T ],
where grad g(p) ∈ TpMg denotes the Riemannian gradient of g , obtained as projTpMg (∂g(p)).

No Maratos: near a minimizer x?, a step d that makes x + d quadratically closer to x? than
x implies descent F (x + d) ≤ F (x).

Transversality: the mapping c : Rn → Rm is transversal to manifold M⊂ Rm at c(x) if:
ker
(
Jacc (x)>

)
∩ Nc(x)Mg = {0}

⇒ if Jach(c(x)) is full rank, then Jach◦c (x) is also full-rank.
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Maximum structure and initial stepsize

In the generated instance, the multiplicity of the maximum eigenvalue at optimum is r = 3.
The maximum structure of a point, useful in setting γ0, is Mr , with r = 6, and not the matrix
size m = 50. Indeed, the codimension of Mr , that is the dimension of its normal spaces,
should be lower than that of Rn: r(r + 1)/2− 1 ≤ 25, that is r ≤ 6 (see the discussion in [?,
pp. 555-556, Eq. 2.5]).
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Quadratic convergence, BigFloat precision

min
x∈R10

max
i=1,··· ,5

(ci (x))

M? = {x : c2(x) = · · · = c5(x)}

Historical maxquad problem

min
x∈R25

λmax

(
A0 +

n∑
i=1

xiAi

)
M? = {x : λmax(c(x)) has multiplicity 3}

Matrices are symmetric, 50× 50.

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.110−84

10−54

10−24

106

time (s)

F(
x k

)−
F?

MaxQuad

0 10 20 30 40 50 60 7010−82

10−54

10−26

102

time (s)

F(
x k

)−
F?

Eigmax

Gradient Sampling nsBFGS LocalNewton

eps(BigFloat) = 1.72e-77
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