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. . 16 16
Includes: max. of C? functions, max. eigenvalue 1 12 12 -
8 8
Observations — Mz
» nondifferentiability points organize in smooth 0 W
. - X
manifolds ¢
8
. -
» F is smooth on them 1 0
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These are structure manifolds. o Lewis '02 5 \‘\21 ; : — )
Many algorithms for nonsmooth (composite) min
optimization:

>(/’F(x)‘ = max(q‘(x), Cz(X), c3(x))

» prox-linear methods o Lewis Wright, '16,
» bundle methods ¢ Mifflin Sagastizébal, '05,

» gradient sampling ¢ Burke Lewis Overton, '05,
» nonsmooth BFGS ¢ Lewis Overton, '13

Most algorithms are oblivious to structure, we try to
leverage it.
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Composite problem

Find x* € argmin F(x) = g o ¢(x), with g nonsmooth and ¢ a smooth mapping

xXERN
Finding a minimizer of F nonsmooth can be seen as:

» find the right structure

e.g. which ¢; are maximum

» leverage the right structure to minimize F

e.g. solve smooth problem with smooth constraints

— We replace (nonsmooth) minimization
by smooth constrained minimization.

Challenges:
1. How to detect the optimal structure M* 5 x*?

2. How to exploit structure to better minimize F?

=

16 16
12 12
8 8

<4 =
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Prox. for finding structure

_ 1
prox, ;(y) = arg min {g(U) + o = Y|2}

For simple functions, the proximity operator can be computed exactly

Example (Prox of max)

T ify; >71
[prox,y max ()/)]l = :

yi else
where T solves Z{i:y’_>7}()/i —T)=7

Structure manifold:

M =A{y :y; = max(y) for i € I}

Y1 Y2 Y3 Ya

v=05
Prox, .. (y) = (7,4,7,3)

Structure: M; with I = {3}
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Prox. for finding structure

_ 1
prox, ;(y) = arg min {g(U) + o = Y|2}

For simple functions, the proximity operator can be computed exactly

Example (Prox of max)
A
T ify;>T1 8
[Prox., e (¥)]i = :
yi else
where 7 solves . i —T) =
Z{l.yf>‘r}(y’ ) v 4 N=7
Structure manifold: ProXmax(y) = (7. 4.7.3)
Structure: M; with I = {1,3}

M;={y:y; =max(y) fori € I}
Y1 Y2 Y3 Ya

— Computing prox..(y) also gives structure information M > prox.,(y).
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Identification with explicit prox

Lemma (B., lutzeler, Malick, '22)

Consider a function g and point y with structure M&
that meet two technical assumptions. For all y near y,

1.5

prox. (y) € M&  for all v € [&(distapa(y)), [E]

where € > 0 and p8(t) = Cit FO(t?).

2
Technical assumptions: normal ascent, control on projection curves 5
L9
on the manifold. I
R . . ., R ) R L identification of MY

Share similarities with o Lewis '02, ¢ Lewis Hare '04, ¢ Vaiter Peyré

0
Fadili '17 0

dist aga (+)
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Identification with explicit prox
Lemma (B., lutzeler, Malick, '22) 1 ! y o1 :
Consider a function g and point y with structure M& 5 (0-)5I
> 4 - PrOX) 5 max (¥
that meet two technical assumptions. For all y neary, 0 o ! [
prox.,(y) € M&  for all v € [#(dist e (y)), €]
1l i
where € > 0 and p8(t) = Cit FO(t?).
7 ) -1 0 1 2

Technical assumptions: normal ascent, control on projection curves

on the manifold.

Share similarities with o Lewis '02, ¢ Lewis Hare '04, ¢ Vaiter Peyré
Fadili '17

identification of MY

0 dist pga (-)
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The prox of F = g o c is not available (composition is complicated), but we do have prox.,

=z T T =
16 16
1 12 12 s
8 8
— M
o S——— . |
8
1 8
-1 i\\ » 12 © /j,‘ i
T, | | —
-2 -1 0 1 2 -2 -1 0 1 2
F(x) = max(c1(x), - - ., cm(x)) g(y) = max(y1, ..., ym)

Observation: prox., can map points to M&.
The structure naturally lies in the intermediate space.
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Back to the optimization space

Theorem (B., lutzeler, Malick, '22)

Consider g, ¢ and a point x such that c(X) has structure manifold M& and ¢ and M& are
transversal at c(x). For all x near x,

prox.,(c(x)) € M&  for all vy € [p(distm(x)),T]

where [ > 0 and p(t) = %t + O(t?). Furthermore, M = C_I(Mg).

— . ; -
16 16
1 12 12 N
8 8
M
L T S
x
0 W 6
I X e ”;
&
8
1k 2 12 |
~ 16 16 7
~— . | | -
-2 -1 0 1 2 2
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Back to the optimization space

Theorem (B., lutzeler, Malick, '22)

Consider g, ¢ and a point x such that c(X) has structure manifold M& and ¢ and M& are
transversal at c(x). For all x near x,

prox.,(c(x)) € M&  for all vy € [p(distm(x)),T]

where I > 0 and ¢(t) = yt - O(t?). Furthermore, M = C_I(Mg).

:
i

[ {x : proxg 5 max(c(x)) € M8} 16 {y £ Proxg 5 max (v) € M8}

L5
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Back to the optimization space

Theorem (B., lutzeler, Malick, '22)
Consider g, ¢ and a point x such that c(X) has structure manifold M& and ¢ and M& are

transversal at c(x). For all x near x,

where I > 0 and ¢(t) =

prox. . (c(x)) € M#

Cmap
—t
c

for all v € [¢(dista(x)), T

- O(¢2). Furthermore, M = c~1(M§).

— <4 =

{x:proxy max(c(x)) € ME}
1 73 12 -
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1l 2 12 .
~ 16 16 7
~_ ‘ -
-2 -1 0 1

{y : proxy max(y) € M#}
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Detection with multiple manifolds
Generally, there are more than one manifolds near x*.

—
o~ »
1 Mz B
> \
-
0 1
8 A © ,““‘
—1F 6 4 7 M3 = -1 ,
P {x: prox; gma(c(x)) € M&} > x* / ~ {x 1 proxy g max(c(x)) € M&*} 5 x* )/
/ Y
-2 -1 0 1 2 -2 -1 0 1 2
M* = M M* = M3

Importance of : too small, detection of M* only near x*; too large, no detection near x*.
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Detection with multiple manifolds
Generally, there are more than one manifolds near x*.

s ¢

6

0

P {x : proxz g max(c(x)) € ME*} 5 x*

-1

/< - M
N {X P prox; o max(c( )) € Mg*} o x* / ,‘ ,'//‘
-2 -1 0 1
M* = My

-2
M* = M
Importance of : too small, detection of M* only near x*; too large, no detection near x*.
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Detection with multiple manifolds

Generally, there are more than one manifolds near x*.

AP, M/ )
> proxgpmalel) € MEy o L | (x prow g e(0)) € ME) x|
-2 -1 0 1 2 -2 -1 0 1 2
M = Maos M = Mo

Importance of : too small, detection of M* only near x*; too large, no detection near x*.
Take-away: We detect M* > x* with prox,, o c(-) with the right range of steps.

— How to choose the step in practice? 7/13
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Nonsmooth to smooth

» Structure manifolds provide second order models of the nonsmooth F:

M is smooth Jh smoothst. xe M & h(x)=0
F smooth on M 3F smooth s.t. Fly =F on M

min F(x) and M turns into  min F(x) s.t. h(x) = 0.
Example (F = max(c1, @))
For structure Mjs,

» h=c — o

> F(x) = (a+a)/2

» Many tools for smooth constrained optimization: Interior Point Methods, Sequential
Quadratic Programming, Augmented Lagrangian Methods, ...

8/13
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Newton step and algorithm

Iteration k:
» Compute prox. ,(c(xx)) and obtain M.

» With structure candidate M,: SQP step on miny Fj(x) s.t. h(x) = 0.

~ 1
dEQP =argmin (VFi(x),d) + §<V>2<ka(Xk, M(xx))d, d)
deRrn

s.t. hk(Xk) +D hk(Xk)d =0

where Li(x,A) = Fi(x) + (A, he(x)), and Ae(xe) = arg miny e || VFe(xi) + 370 XV hii(x)]|

Set X1 = Xk + d2 O if Fx + d09) < F(xe).

> Vk+1 = %

Similar works with heuristic structure detection: ¢ Womersley Fletcher '86 for max, ¢ Noll Apkarian, '05 for Amax -

9/13
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Local exact structure identification and quadratic convergence

Theorem (B., lutzeler, Malick, '22)

Consider a function F = g o ¢ and x* a strong minimizer with structure manifold M* that
meets the technical assumptions.

If xo and F(xp) are close enough to x* and F(x*), o is large enough and no Maratos effect
happens, then there exists C > 0 such that:

M =M* and ||xp1— x*|| < Cllxi — x*||* for all k large enough.

Proof idea r
» if My = M*, the SQP step brings quadratic improvement
» since 7, decreases, at some point vy € [p(dista(xk)), ]
» to stay in that region, decrease 7 not too fast

dist ()
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Quadratic convergence
n
. min A A E X;Aj
min max (ci(x)) nin, Amax | Ao i
x€RL0 i=1,-- 5 i=1
MY ={x:0(x)="-=0cs5(x)} M* = {x : Amax(c(x)) has multiplicity 3}
Historical maxquad problem ¢ HULL '93 Matrices are symmetric, 50 x 50
MaxQuad Eigmax
10! & T T T T = ‘ T T
‘*"‘4% 1072 |
x10-5| D | X
; Lo |
L o107M - B o 11
10 r b
%*M
10-17 ! ! I I L 10-15 1 ! ! L I 4
0 1 2 3 4 5 0 0.2 0.4 0.6 0.8 1
time (s) 1073 time (s)
Gradient Sampling —+— nsBFGS LocalNewton
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Proximal identification
Corollary: There exists L > 0, € > 0 such that

[x =x*[| <eand L[|x =x*[| <y <T = prox,(c(x)) € M&".

This checks out in practice:

MaxQuad Eigmax
T T T T T
10-1 8 10-17 ] 7]
102 T T T T
10! F 3
1030 4 10742 |- w et ] B
Jo1 o st st
10’710’610’51074107310’2
—49 L L L L L | 10767 L L L L
1073 1072 1071 1072 10°° 1074 10732 107 107 10°®  10°
[lxe = x| [lx = x*|
H . * . *
inf{y : prox,z(c(xx)) € ME*} —+—sup{7y : prox, (c(xx)) € M&*} Tk

12/13
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Conclusion
Take-away messages
» Proximal methods identify smooth structure in nonsmooth composite problems
» We show local exact identification and quadratic rate for g o ¢, where g is prox-simple, no
convexity required

B. & lutzeler & Malick: Harnessing structure in composite nonsmooth minimization

https://arxiv.org/abs/2206.15053

Work in progress and perspectives
» Drop the locality: i) need more information to identify, ii) globalize constrained Newton

Thank you!

Gilles BAREILLES — gbareilles.fr
13/13
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000

Technical assumptions
Normal ascent: g increases at y on normal directions:

0 € 1i projy, ps 0g(¥)
Manifold curves: A function g with structure M# at y satisfies the curve property if there
exists a neighborhood Ny of y and T > 0 such that, for any smooth application

e: Ny x[0, T] — M& verifying e(y,0) = proj . (y) and %e(y, 0) = —grad g(proj v (v)).
there holds

I proj,, s (ely, t) = y)Il < distms(y) + Lt? forally e Ny, tel0,T],

where grad g(p) € TpM#& denotes the Riemannian gradient of g, obtained as proj ,,)Mg((')g(p)).

No Maratos: near a minimizer x*, a step d that makes x 4+ d quadratically closer to x* than
x implies descent F(x + d) < F(x).

Transversality: the mapping c : R" — R™ is transversal to manifold M C R™ at ¢(x) if:
ker (Jace(x) ") N Ny ME = {0}

> if Jacy(c(x)) is full rank, then Jacpoc(x) is also full-rank.



(o] e}

Maximum structure and initial stepsize

In the generated instance, the multiplicity of the maximum eigenvalue at optimum is r = 3.
The maximum structure of a point, useful in setting g, is M,, with r = 6, and not the matrix
size m = 50. Indeed, the codimension of M,, that is the dimension of its normal spaces,
should be lower than that of R™: r(r +1)/2 — 1 < 25, that is r < 6 (see the discussion in [?,

pp. 555-556, Eq. 2.5]).
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Quadratic convergence, BigFloat precision

Jmin,  max (ci(x))
M* ={x:c(x)="=c(x)}

Historical maxquad problem

x€ER?

M* = {x : Amax(c(x)) has multiplicity 3}

n
min Amax | Ao + ZX,'A:'
i—1

Matrices are symmetric, 50 x 50.

MaxQuad Eigmax

108 F T T T T T = 102 F T T T T &
bk A o ——
L1072 i L1072 i
| |
= S
T g0 | 8 L o5 8
10784 L L L L L L | 1082 L L L L L L

0 2.100%-107%-10%8-10"2 0.1 0 10 20 30 40 50 60 70

time (s) time (s)

Gradient Sampling —+— nsBFGS LocalNewton
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